首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123795篇
  免费   7450篇
  国内免费   9367篇
  2023年   1682篇
  2022年   2033篇
  2021年   4019篇
  2020年   3238篇
  2019年   4014篇
  2018年   3287篇
  2017年   2971篇
  2016年   3431篇
  2015年   5329篇
  2014年   9194篇
  2013年   9493篇
  2012年   7172篇
  2011年   8139篇
  2010年   5951篇
  2009年   6136篇
  2008年   6221篇
  2007年   6752篇
  2006年   5191篇
  2005年   4643篇
  2004年   3607篇
  2003年   3197篇
  2002年   2903篇
  2001年   2253篇
  2000年   2056篇
  1999年   1850篇
  1998年   1648篇
  1997年   1413篇
  1996年   1368篇
  1995年   1401篇
  1994年   1323篇
  1993年   1289篇
  1992年   1164篇
  1991年   1153篇
  1990年   953篇
  1989年   921篇
  1988年   883篇
  1987年   727篇
  1986年   707篇
  1985年   1098篇
  1984年   1466篇
  1983年   886篇
  1982年   1213篇
  1981年   1183篇
  1980年   919篇
  1979年   834篇
  1978年   548篇
  1977年   571篇
  1976年   507篇
  1974年   368篇
  1973年   394篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
The Parkinson disease protein α-synuclein is N-terminally acetylated, but most in vitro studies have been performed using unacetylated α-synuclein. Binding to lipid membranes is considered key to the still poorly understood function of α-synuclein. We report the effects of N-terminal acetylation on α-synuclein binding to lipid vesicles of different composition and curvature and to micelles composed of the detergents β-octyl-glucoside (BOG) and SDS. In the presence of SDS, N-terminal acetylation results in a slightly increased helicity for the N-terminal ∼10 residues of the protein, likely due to the stabilization of N-terminal fraying through the formation of a helix cap motif. In the presence of BOG, a detergent used in previous isolations of helical oligomeric forms of α-synuclein, the N-terminally acetylated protein adopts a novel conformation in which the N-terminal ∼30 residues bind the detergent micelle in a partly helical conformation, whereas the remainder of the protein remains unbound and disordered. Binding of α-synuclein to lipid vesicles with high negative charge content is essentially unaffected by N-terminal acetylation irrespective of curvature, but binding to vesicles of lower negative charge content is increased, with stronger binding observed for vesicles with higher curvature. Thus, the naturally occurring N-terminally acetylated form of α-synuclein exhibits stabilized helicity at its N terminus and increased affinity for lipid vesicles similar to synaptic vesicles, a binding target of the protein in vivo. Furthermore, the novel BOG-bound state of N-terminally acetylated α-synuclein may serve as a model of partly helical membrane-bound intermediates with a role in α-synuclein function and dysfunction.  相似文献   
42.
Populations evolve in response to the external environment, whether abiotic (e.g., climate) or biotic (e.g., other conspecifics). We investigated how adaptation to biotic, heritable environments differs from adaptation to abiotic, nonheritable environments. We found that, for the same selection coefficients, the coadaptive process between genes and heritable environments is much faster than genetic adaptation to an abiotic nonheritable environment. The increased rate of adaptation results from the positive association generated by reciprocal selection between the heritable environment and the genes responding to it. These associations result in a runaway process of adaptive coevolution, even when the genes creating the heritable environment and genes responding to the heritable environment are unlinked. Although tightening the degree of linkage accelerates the coadaptive process, the acceleration caused by a comparable amount of inbreeding is greater, because inbreeding has a cumulative effect on reducing functional recombination over generations. Our results suggest that that adaptation to local abiotic environmental variation may result in the rapid diversification of populations and subsequent reproductive isolation not directly but rather via its effects on heritable environments and the genes responding to them.  相似文献   
43.
Hydrogen sulfide (H2S) is a novel gasotransmitter that plays multiple biological roles in various body systems. In addition to its endogenous production, H2S is produced by bacteria colonizing digestive organs, including the oral cavity. H2S was previously shown to enhance pro-apoptotic effects in cancer cell lines, although the mechanisms involved remain unclear. To properly assess the anti-cancer effects of H2S, however, investigations of apoptotic effects in normal cells are also necessary. The aims of this study were (1) to compare the susceptibility to H2S-induced apoptosis between the oral cancer cell line Ca9-22 and oral keratinocytes that were derived from healthy gingiva, and (2) to identify candidate genes involved in the induction of apoptosis by H2S. The susceptibility to H2S-induced apoptosis in Ca9-22 cells was significantly higher than that in keratinocytes. H2S exposure in Ca9-22 cells, but not keratinocytes, enhanced the expression of pleckstrin homology-like domain, family A, member 1 (PHLDA1), which was identified through a differential display method. In addition, PHLDA1 expression increased during actinomycin D-induced apoptosis in Ca9-22 cells. Knockdown of PHLDA1 expression by small interfering RNA in Ca9-22 cells led to expression of active caspase 3, thus indicating apoptosis induction. The tongue cancer cell line SCC-25, which expresses PHLDA1 at a high level, showed similar effects. Our data indicate that H2S is an anti-cancer compound that may contribute to the low incidence of oral cancer. Furthermore, we demonstrated the role of PHLDA1 as an apoptosis suppressor.  相似文献   
44.
DNA replication is a fundamental process of the cell that ensures accurate duplication of the genetic information and subsequent transfer to daughter cells. Various pertubations, originating from endogenous or exogenous sources, can interfere with proper progression and completion of the replication process, thus threatening genome integrity. Coordinated regulation of replication and the DNA damage response is therefore fundamental to counteract these challenges and ensure accurate synthesis of the genetic material under conditions of replication stress. In this review, we summarize the main sources of replication stress and the DNA damage signaling pathways that are activated in order to preserve genome integrity during DNA replication. We also discuss the association of replication stress and DNA damage in human disease and future perspectives in the field.  相似文献   
45.
Accurately estimating patient-specific rupture risk remains a primary challenge in timing interventions for abdominal aortic aneurysms (AAAs). By re-analyzing published biaxial mechanical testing data from surgically repaired human AAAs, material anisotropy emerged as a potentially important determinant of patient-specific lesion progression. That is, based on a new classification scheme, we discovered that anisotropic aneurysmal specimens correlated with increased patient age at surgery when compared with more isotropic specimens (79.7 vs. 70.9 years, p<0.002), despite no significant difference in maximum diameter. Furthermore, using an idealized axisymmetric, finite-element growth and remodeling model of AAA progression, we found that both the initial axial extent of elastin loss and ongoing damage to elastin in the shoulder region of the AAA directly affected the degree of anisotropy as the lesion evolved, with more extensive insults increasing the anisotropy. This effect appeared to be mediated by alterations in axial loading and subsequent differences in orientation of deposited collagen fibers. While the observed increased age before surgical intervention may suggest a potential benefit of anisotropic remodeling, future biaxial tests coupled with pre-surgical data on expansion rates and detailed theoretical analyses of the biostability of a lesion as a function of anisotropy will be required to verify its clinical relevance to patient-specific rupture risk.  相似文献   
46.
The activity of invertase, glucose oxidase and amylase in the cephalic (post‐cerebral) and thoracic salivary glands is determined in Egyptian and Carniolan honeybees (Apis mellifera L). For this purpose, three ages of worker bees are selected for enzyme assays. The results show that the three target enzymes are detected in the two glands during the three worker ages, except invertase, which cannot be detected in the cephalic gland of newly emerged bees of both subspecies. In both glands, the secretion of invertase is highest, followed by amylase and then glucose oxidase. In Carniolan bees, invertase secretion of the cephalic and thoracic glands increases gradually with age. In Egyptian bees, invertase increases with age only in the cephalic gland, whereas, in the thoracic gland, the highest secretion activity is detected in 10–15‐day‐old bees. The highest amounts of glucose oxidase and amylase in the cephalic gland are detected in newly emerged individuals of both Egyptian and Carniolan bees. In the thoracic gland, however, the highest activity of both enzymes is recorded only in newly emerged Egyptian bees. The results are discussed in the light of bee management and biological aspects of the two subspecies.  相似文献   
47.
Debate concerning the social impact of obesity has been ongoing since at least the 1980s. Bioethicists, however, have been relatively silent. If obesity is addressed it tends to be in the context of resource allocation or clinical procedures such as bariatric surgery. However, prominent bioethicists Peter Singer and Dan Callahan have recently entered the obesity debate to argue that obesity is not simply a clinical or personal issue but an ethical issue with social and political consequences. This article critically examines two problematic aspects of Singer and Callahan's respective approaches. First, there is an uncritical assumption that individuals are autonomous agents responsible for health‐related effects associated with food choices. In their view, individuals are obese because they choose certain foods or refrain from physical activity. However, this view alone does not justify intervention. Both Singer and Callahan recognize that individuals are free to make foolish choices so long as they do not harm others. It is at this point that the second problematic aspect arises. To interfere legitimately in the liberty of individuals, they invoke the harm principle. I contend, however, that in making this move both Singer and Callahan rely on superficial readings of public health research to amplify the harm caused by obese individuals and ignore pertinent epidemiological research on the social determinants of obesity. I argue that the mobilization of the harm principle and corresponding focus on individual behaviours without careful consideration of the empirical research is itself a form of harm that needs to be taken seriously.  相似文献   
48.
49.
Computer-aided antibody engineering has been successful in the design of new biologics for disease diagnosis and therapeutic interventions. Interleukin-6 (IL-6), a well-recognized drug target for various autoimmune and inflammatory diseases such as rheumatoid arthritis, multiple sclerosis, and psoriasis, was investigated in silico to design potential lead antibodies. Here, crystal structure of IL-6 along with monoclonal antibody olokizumab was explored to predict antigen–antibody (Ag???Ab)-interacting residues using DiscoTope, Paratome, and PyMOL. Tyr56, Tyr103 in heavy chain and Gly30, Ile31 in light chain of olokizumab were mutated with residues Ser, Thr, Tyr, Trp, and Phe. A set of 899 mutant macromolecules were designed, and binding affinity of these macromolecules to IL-6 was evaluated through Ag???Ab docking (ZDOCK, ClusPro, and Rosetta server), binding free-energy calculations using Molecular Mechanics/Poisson Boltzman Surface Area (MM/PBSA) method, and interaction energy estimation. In comparison to olokizumab, eight newly designed theoretical antibodies demonstrated better result in all assessments. Therefore, these newly designed macromolecules were proposed as potential lead antibodies to serve as a therapeutics option for IL-6-mediated diseases.  相似文献   
50.
The endoplasmic reticulum is the main intracellular Ca2+ store for Ca2+ release during cell signaling. There are different strategies to avoid ER Ca2+ depletion. Release channels utilize first Ca2+-bound to proteins and this minimizes the reduction of the free luminal [Ca2+]. However, if release channels stay open after exhaustion of Ca2+-bound to proteins, then the reduction of the free luminal ER [Ca2+] (via STIM proteins) activates Ca2+ entry at the plasma membrane to restore the ER Ca2+ load, which will work provided that SERCA pump is active. Nevertheless, there are several noxious conditions that result in decreased activity of the SERCA pump such as oxidative stress, inflammatory cytokines, and saturated fatty acids, among others. These conditions result in a deficient restoration of the ER [Ca2+] and lead to the ER stress response that should facilitate recovery of the ER. However, if the stressful condition persists then ER stress ends up triggering cell death and the ensuing degenerative process leads to diverse pathologies; particularly insulin resistance, diabetes and several of the complications associated with diabetes. This scenario suggests that limiting ER stress should decrease the incidence of diabetes and the mobility and mortality associated with this illness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号